Nonlocal diffusion equations in Carnot groups

نویسندگان

چکیده

Let G be a Carnot group. We study nonlocal diffusion equations in domain $$\Omega$$ of the form $$\begin{aligned} u_t^\epsilon (x,t)=\int _{G}\frac{1}{\epsilon ^2}K_{\epsilon }(x,y)(u^\epsilon (y,t)-u^\epsilon (x,t))\,dy, \qquad x\in \Omega \end{aligned}$$ with $$u^\epsilon =g(x,t)$$ for $$x\notin \Omega$$ . For an appropriated rescaled kernel $$K_\epsilon$$ , we apply Taylor series development groups order to prove that solutions $$u^\epsilon$$ uniformly approximate solution certain local Dirichlet problem when $$\epsilon \rightarrow 0$$

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlocal nonlinear advection-diffusion equations

We review some results about nonlocal advection-diffusion equations based on lower bounds for the fractional Laplacian. To Haim, with respect and admiration.

متن کامل

On Nonlinear Nonlocal Diffusion Equations

This is a study of a class of nonlocal nonlinear diffusion equations (NNDEs). We present several new qualitative results for nonlocal Dirichlet problems. It is shown that solutions with positive initial data remain positive through time, even for nonlinear problems; in addition, we prove that solutions to these equations obey a strong maximum principle. A striking result shows that nonlocal sol...

متن کامل

Homogenization of Hamilton-jacobi Equations in Carnot Groups

We study an homogenization problem for Hamilton-Jacobi equations in the geometry of Carnot Groups.The tiling and the corresponding notion of periodicity are compatible with the dilatations of the Group and use the Lie bracket generating property. 1. Background and motivations Consider a Hamilton-Jacobi equation: u+H(ξ,∇u) = 0 in R where the Hamiltonian H(ξ, p) : R × RN×N → R is not coercive in ...

متن کامل

Isodiametric Inequality in Carnot Groups

The classical isodiametric inequality in the Euclidean space says that balls maximize the volume among all sets with a given diameter. We consider in this paper the case of Carnot groups. We prove that for any Carnot group equipped with a Haar measure one can find a homogeneous distance for which this fails to hold. We also consider Carnot-Carathéodory distances and prove that this also fails f...

متن کامل

Chaotic Geodesics in Carnot Groups

Graded nilpotent Lie groups, or Carnot Groups are to subRiemannian geometry as Euclidean spaces are to Riemannian geometry. They are the metric tangent cones for this geometry. Hoping that the analogy between subRiemannian and Riemannian geometry is a strong one, one might conjecture that the subRiemannian geodesic flow on any Carnot group is completely integrable. We prove this conjecture is f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Rendiconti Del Circolo Matematico Di Palermo

سال: 2022

ISSN: ['1973-4409', '0009-725X']

DOI: https://doi.org/10.1007/s12215-022-00780-5